
CS 4530: Fundamentals of Software Engineering
Module 7: React

Adeel Bhutta, Jan Vitek and Mitch Wand
Khoury College of Computer Sciences

1

© 2023 Released under the CC BY-SA license

https://creativecommons.org/licenses/by-sa/4.0/


Learning Objectives for this Lesson
• By the end of this lesson, you should be able to:

• Understand how the React framework binds data (and 
changes to it) to a UI

• Create simple React components that use state and 
properties

• Be able to map the three core steps of a test (construct, 
act, check) to UI component testing

2



HTML: The Markup Language of the 
Web
• Language for describing structure 

of a document

• Denotes hierarchy of elements

• What might be elements in this 
document?



Rich, interactive web apps
• Infinite scrolling of cats






Typical properties of web app Uis
Building abstractions for web app development?
• Each widget has both visual presentation & logic

• e.g., clicking on like button executes some logic related 
to the containing widget

• Logic and presentation of individual widget strongly 
related, loosely related to other widgets

• Some widgets occur more than once
• e.g., comment/like widgets

• Changes to data should cause changes to widget
• e.g., new images, new comments should show up in real 

time



Key Idea: Components
• Web pages are complex, with lots of logic 

and presentation 

• How can we organize web page to 
maximize modularity?

• Solution: Components - Easy to repeat, 
cohesive pieces of code (hopefully with 
low coupling)



Components
• Organize related logic and presentation 

into a single unit
• Includes necessary state and the logic for 

updating this state
• Includes presentation for rendering this state 

into HTML

• Synchronizes state and visual presentation
• Whenever state changes, HTML should be 

rendered again



Components
Example: Like button component
• What does the button keep track of?

• Is it liked or not
• What post this is associated with

• What logic does the button have?
• When changing like status, send update to 

server

• How does the button look?
• Filled in if liked, hollow if not



Server side vs. client side
• Where should template/component be instantiated?

• Server-side frameworks: Template instantiated on server
• Examples: JSP, ColdFusion, PHP, ASP.NET
• Logic executes on server, generating HTML that is served to 

browser

• Front-end framework: Template runs in web browser
• Examples: React, Angular, Meteor, Ember, Aurelia, …
• Server passes template to browser; browser generates HTML 

on demand



Expressing Logic
• Templates/components require combining logic 

with HTML
• Conditionals - only display presentation if some 

expression is true
• Loops - repeat this template once for every item in 

collection

• How should this be expressed?
• Embed code in HTML (ColdFusion, JSP, Angular) 
• Embed HTML in code (React)



Embedding Code in HTML
• Template takes the form of an 

HTML file, with extensions
• Popular for server-side frameworks
• Uses another language (e.g., Java, 

C) or custom language to express 
logic

• Found in frameworks such as PHP, 
Angular, ColdFusion, ASP (NOT 
React)

• Can’t type check anything



Embedding HTML in TypeScript
Aka JSX or TSX
• How do you embed HTML in 

TypeScript and get syntax checking?
• Idea: extend the language: JSX, TSX

• JavaScript (or TypeScript) language, 
with additional feature that 
expressions may be HTML

• It’s a new language
• Browsers do not natively run JSX (or 

TypeScript)
• We use build tools that compile 

everything into JavaScript



React: Front End Framework for 
Components
• Created by Facebook
• Powerful abstractions for describing frontend UI 

components
• Official documentation & tutorials: 

https://reactjs.org/
• Key concepts:

• Embed HTML in TypeScript
• Track application “state”
• Automatically and efficiently re-render page in browser 

based on changes to state

https://reactjs.org/


Rich, interactive web apps
Infinite scrolling of cats

Built with React

Plus, AirBNB, Uber, Pinterest, 
Netflix, Twitter and 8855 more



Embedding HTML in TypeScript

• HTML embedded in TypeScript
• HTML can be used as an expression
• HTML is checked for correct syntax

• Can use { expr } to evaluate an expression and return a 
value

• e.g., { 5 + 2 }, { foo() } 

• To wrap on multiple lines, wrap the TSX in (parentheses)
• Output of expression is HTML

return <div>Hello {someVariable}</div>;



Creating New React Applications
• React applications must be 

“transpiled” into a format that 
browsers can understand

• “Create React App” is a set of scripts 
to automate this all

• Get started: npx create-react-app 
my-app --template typescript

• Implement in App.tsx, run npm start
to run in web browser



Hello World in React

“Declare a Hello component”
Declares a new component 
that can be rendered by React

“Return the following HTML whenever the 
component is rendered”
The HTML is dynamically 
generated by the library.

export function HelloMessage(){
return <div>Hello, World!</div>

}

function App(){
return <HelloMessage />;

}

“Render a Hello Component”
Components are rendered as if they were 
HTML tags



You may see “Class” components, too – but 
we won’t write them

Hello World, Circa 2016
(Before the “Class” keyword!)

Hello World, Circa 2020
(Defined as a Class)

Hello World, Circa 2022 
(Defined as a function)

export function HelloMessage(){
return <div>Hello, World!</div>

}
class HelloMessage extends React.Component {
render(){
return <div>Hello, World!</div>

}
}

var HelloMessage = React.createClass({
render: function() {
return <div>Hello, World!</div>

}
})



React Components Can Receive Properties
• Properties are passed in an argument to the component
• Properties are specified as attributes when the 

component is instantiated
• Properties can not be changed by the component 
• Reminder: inside of HTML code, execute TypeScript code 

using {mustaches}

export function PersonalizedHello(props: {name: string}){
return <div>Hello, {props.name}! This is React!</div>

}

<PersonalizedHello name="Ripley" />



Component State is Data That Changes
• All internal component data that, when changed, 

should trigger UI update
• Stored as state variables in the component

• Created using useState<stateType>(defaultValue)
• E.g. const [isLiked, setIsLiked] = useState(false);
• Import useState from React

• The only way to change the value of a state variable is 
with the setter

• You could choose any names for the variable and its 
setter; for this class, please follow the convention of 
const [goodVariableName, setGoodVariableName] 

Hooks allows us to store 
data that can be re-used 
later (primarily because 
there is no notion of 
“instance” here like in 
OOD)



React State Example: “Like” Button

Goal: Add a “like” button: 
clicking it will toggle the 
state from liked to not liked



React State Example: “Like” Button

function PersonalizedLikableHello(props: { name: string }) {
const [isLiked, setIsLiked] = useState(false);
let likeButton;
if (isLiked) {
likeButton = (<IconButton aria-label="unlike"

icon={<AiFillHeart />} onClick={() => setIsLiked(false)} /> );
} else {
likeButton = (<IconButton aria-label="like"

icon={<AiOutlineHeart />} onClick={() => setIsLiked(true)} /> );
}
return (
<div>

Hello, {props.name}! This is React! {likeButton}
</div>

);
}

Create a state variable called isLiked, and a state setter, defaulting to false

Depending on the state, show a filled-in or outlined button

Each button has an alt-text label, an icon, and an onClick handler



Sidebar: React Has a Rich Component 
Library

Install UI libraries from 
NPM just like any other kind 
of module, e.g.
npm install --save @chakra-
ui/react



Nest Components, Passing State as 
Properties
• A common pattern in React is to store state in one component, 

and nest others in it, passing properties
• Example: Creating multiple PersonalizedHello’s:
export function MultiHellos() {
const [names, setNames] = useState(["Ripley", "Avery", "Calin"]);

return (
<div>

{names.map((eachName) => (
<PersonalizedLikableHello name={eachName} />

))}
</div>

);
}

• Problem: How to add “delete” buttons?

Do not reference this slide for study (spoiler alert!)



Nest Components, Passing State (and setter) 
as Properties
• Add a “delete” button inside of each Hello Message
• What should the delete button do? The state with the list of 

names is stored in the MultiHellos component
• Solution: Pass an “onDelete” handler to each 

export function MultiHellos() {
const [names, setNames] = useState(["Ripley", "Avery", "Calin"]);
return (<div>

{names.map((eachName) => (
<PersonalizedLikableDeletableHello name={eachName}
onDelete={()=> setNames(names.filter(
filteredName => filteredName !== eachName))}/>

))}
</div>

);
}

Do not reference this slide for study (spoiler alert!)



React State Example: “Delete” Button

function PersonalizedLikableDeletableHello (
props: {name: string, onDelete: ()=> void }

) 
{

const [isLiked, setIsLiked] = useState(false);
let likeButton;
……

return (
<div>

Hello, {props.name}! This is React! {likeButton}
<IconButton aria-label='delete' icon={<AiTwotoneDelete />} onClick={props.onDelete} />

</div>
);

}

Create a state variable called isLiked, and a state setter, defaulting to false

onDelete prop of this 
button is connected to 
the onClick handler



Testing the “Delete” button
export function MultiHellos() {

const [names, setNames] = useState(["Ripley", "Avery", "Calin"]);
return (<div>

{names.map((eachName) => (
<PersonalizedLikableDeletableHello name={eachName}
onDelete={()=> setNames(names.filter(
filteredName => filteredName !== eachName))}/>

))}
</div>

);
}



Testing the Delete AND Like Buttons
export function MultiHellos() {

const [names, setNames] = useState(["Ripley", "Avery", "Calin"]);
return (<div>

{names.map((eachName) => (
<PersonalizedLikableDeletableHello name={eachName}
onDelete={()=> setNames(names.filter(
filteredName => filteredName !== eachName))}/>

))}
</div>

);
}



Reacting to change:
How does the page update automatically?
• Re-rendering is asynchronous: do not happen 

immediately upon calling a state setter
• Reconciliation: Framework diffs the previously rendered 

DOM with the new DOM, updating only part of DOM that 
changed

• Updating the DOM in the browser is slow - it is vital that 
React does efficient diff’ing

• Example: adding a new comment on a YouTube video 
shouldn’t make the browser re-layout the whole page



Reconciliation Must Differentiate Updates 
from Deletions/Additions

<div>
<PersonalizedLikableDeletableHello name="Ripley" />
<PersonalizedLikableDeletableHello name="Avery" /> /* isLiked=true */
<PersonalizedLikableDeletableHello name="Calin" />

</div>

<div>
<PersonalizedLikableDeletableHello name="Avery" />
<PersonalizedLikableDeletableHello name="Calin" /> /* isLiked=true */

</div>

Before deleting Ripley’s Greeting:

After deleting Ripley’s Greeting:

React processed this change as:
Ripley’s greeting becomes Avery’s greeting
Avery’s greeting becomes Calin’s greeting
Calin’s greeting is deleted



Reconciliation with Keys
• Add the “key” attribute to each component in a list
• Keys must be unique
• React will use the “key” to determine which elements are added, 

deleted, or re-ordered when re-rendered

31

export function MultiHellos() {
const [names, setNames] = useState(["Ripley", "Avery", "Calin"]);
return (<div>

{names.map((eachName) => (
<PersonalizedLikableDeletableHello name={eachName}
key={eachName}
onDelete={()=> setNames(names.filter(filteredName => filteredName !== eachName))}/>

))}
</div>

);
}



Summarizing React Behavior
• React uses default state for the first render of our 

component.
• When setter is called, React asynchronously re-renders 

our component and the state variables is updated
• React uses Reconciliation for faster re-rendering by 

updated the part that changes. It uses some magic like 
keeping track of state of each component (e.g., second 
component was liked)

• Keys are helpful in correct re-rendering. These should be 
unique and stable (don’t change with each update)



Write UI component tests just like any other 
test
Follow the generic testing model from Module 2:

33

• Assemble the situation:
• Set up system under test (SUT) to get the state ready
• [Optional: Prepare collaborators]

• Act - Apply the operation inputs.
• Assess - Check the outputs, verify the state change, 

handle the behavior

1: Render component 
into a testing DOM tree

2: Interact with the 
rendered component

3: Check the rendered 
result



UI Testing Libraries make Component Tests 
Lightweight
• Render components into a “virtual DOM”

• Just like browser would, but no browser

• Interact with components by “firing events” like a 
user would

• Click, enter text, etc. on DOM nodes, just like a user 
would in a browser

• Inspect components that are rendered
• Tests specify how to “find” a component in that virtual 

DOM

34

“Testing Library”
https://testing-library.com

Compatible with many UI libraries 
and many testing frameworks

https://testing-library.com/


Rendering Components in Virtual DOM

• The render function prepares our component for 
testing:

• Creates a virtual DOM
• Instantiates our component, mounts it in DOM
• Mocks all behavior of the core of React
• Allows us to inspect the rendered result in the screen

import

35

let deleteCalled = false;
beforeEach(() => {
deleteCalled = false;
render(
<PersonalizedLikableDeletableHello name="Ripley"
onDelete={() => { deleteCalled = true; }} /> );

});

https://testing-library.com/docs/react-testing-library/api#render

https://testing-library.com/docs/react-testing-library/api#render


Inspecting Rendered Components: By Text

First approach to inspect rendered components: match by text

36

test("It renders the greeting", ()=>{
const greeting = screen.getByText(/Hello, Ripley!/);
expect(greeting).toBeInTheDocument();

})

return (
<div>
Hello, {props.name}! This is React! {likeButton}
<IconButton aria-label='delete' icon={<AiTwotoneDelete />}

onClick={props.onDelete} />
</div>

);

SUT

Test



Acting on Rendered Components: userEvent
• Testing Library provides userEvent.<event> methods

• userEvent.type(newItemTextField, "Write a 
better test input");
userEvent.click(newItemButton);
Also: change, keyDown, keyUp, etc

• These methods simulate user behavior:
• Before clicking: MouseOver, MouseMove, MouseDown, 

MouseUp
• Type will click the text box, then provide characters one-at-a-

time

37



Inspecting Rendered Components: ARIA 
label

38

test("Like button defaults to not liked, clicking it likes, clicking again 
unlikes", () => {
const likeButton = screen.getByLabelText("like");
fireEvent.click(likeButton);
const unLikeButton = screen.getByLabelText("unlike");
fireEvent.click(unLikeButton);
expect(screen.getByLabelText("like")).toBeInTheDocument();

});

if (isLiked) {
likeButton = (<IconButton aria-label="unlike"

icon={<AiFillHeart />} onClick={() => setIsLiked(false)} /> );
} else {
likeButton = (<IconButton aria-label="like"

icon={<AiOutlineHeart />} onClick={() => setIsLiked(true)} /> );
}

SUT

Test



3 Tiers for Inspecting Rendered Components

39

• Queries that reflect how every users interacts with your app
• byRole – Using accessibility tree
• byLabelText – Using label on form fields
• byPlaceHolderText – Using placeholder text on form field
• byText – By exact text in an element
• byDisplayValue – By current value in a form field

• Queries that reflect how some users interact with your app
• byAltText – By alt text, usually not presented to sighted users
• byTitle - By a “title” attribute, usually not presented to sighted users

• Queries that have nothing to do with how a user interacts with app
• byTestId

More: https://testing-library.com/docs/queries/about

https://testing-library.com/docs/queries/about


Testing Library Cheat Sheet
No Match 1 Match 1+ Match Await?

getBy throw return throw No

findBy throw return throw Yes

queryBy null return throw No

getAllBy throw array array No

findAllBy throw array array Yes

queryAllBy [] array array No

• Get and query have different 
behavior when there are 
different numbers of matches

• Find is async and will return a 
promise to wait for all rendering 
to complete

40https://testing-library.com/docs/react-testing-library/cheatsheet

https://testing-library.com/docs/react-testing-library/cheatsheet


Review
• Now that you've studied this lesson, you should be 

able to:
• Understand how the React framework binds data (and 

changes to it) to a UI
• Create simple React components that use state and 

properties
• Be able to map the three core steps of a test (construct, 

act, check) to UI component testing
• The next lesson will include a deep-dive on patterns of 

React, including useState and its friend, useEffect

41


	CS 4530: Fundamentals of Software Engineering�Module 7: React
	Learning Objectives for this Lesson
	HTML: The Markup Language of the Web
	Rich, interactive web apps
	Typical properties of web app Uis�Building abstractions for web app development?
	Key Idea: Components
	Components
	Components�Example: Like button component
	Server side vs. client side
	Expressing Logic
	Embedding Code in HTML
	Embedding HTML in TypeScript�Aka JSX or TSX
	React: Front End Framework for Components
	Rich, interactive web apps�Infinite scrolling of cats
	Embedding HTML in TypeScript
	Creating New React Applications
	Hello World in React
	You may see “Class” components, too – but we won’t write them
	React Components Can Receive Properties
	Component State is Data That Changes
	React State Example: “Like” Button
	React State Example: “Like” Button
	Sidebar: React Has a Rich Component Library
	Nest Components, Passing State as Properties
	Nest Components, Passing State (and setter) as Properties
	React State Example: “Delete” Button
	Testing the “Delete” button
	Testing the Delete AND Like Buttons
	Reacting to change:�How does the page update automatically?
	Reconciliation Must Differentiate Updates from Deletions/Additions
	Reconciliation with Keys
	Summarizing React Behavior
	Write UI component tests just like any other test
	UI Testing Libraries make Component Tests Lightweight
	Rendering Components in Virtual DOM
	Inspecting Rendered Components: By Text
	Acting on Rendered Components: userEvent
	Inspecting Rendered Components: ARIA label
	3 Tiers for Inspecting Rendered Components
	Testing Library Cheat Sheet
	Review

